乳制品、酒类发酵过程是无菌的、无污染过程,通常使用发酵罐进行发酵。
发酵罐是用于微生物发酵的装置,主体通常是由不锈钢板制成的主缸,其容积为1立方米至几百立方米,在设计和处理过程中结构很严密。
发酵罐使用无菌系统来防止空气中的微生物污染,从而大大延长了产品的保质期和产品的纯度。储罐经过专门设计,带有无菌呼吸孔或无菌正压发酵系统。罐体装有或迷宫式夹套,可通过加热或冷却介质对其进行加热或冷却。发酵罐规格有很多种,发酵罐容量为300-15000L。
在啤酒发酵中,酵母接种后,由于酵母的凝固作用,使罐底酵母细胞密度增加,从而加快了发酵速度,增加了发酵过程中产生的二氧化碳。同时,由于发酵液液柱高度产生的静压,二氧化碳含量随液层的变化呈梯度变化,因此发酵液在罐内的密度也呈梯度变化。
此外,由于锥形罐外设有冷却装置,可以人工控制发酵各阶段的温度。在静压差、二氧化碳释放密度差和罐上部冷却产生温差(1-2℃)的驱动力作用下,罐内发酵液产生强自然对流,增强了酵母与发酵液的接触,促进了酵母的代谢,大大提高了啤酒的发酵速度,啤酒发酵周期明显缩短。
在啤酒发酵过程中会产生大量的二氧化碳气体,发酵液中的浓度变化不像溶氧那样规律。其大小受多种因素的影响,如细菌的呼吸强度、发酵液的流变特性、通风搅拌程度和外界压力,设备的大小也有影响。
随着CO2溶解度的增加,大罐发酵液的静压可达1×10>pa以上,为正压发酵,罐底压力可达1.5x10pa,因此,随着压力的增加在二氧化碳浓度中,搅拌速度不改变,二氧化碳不易排出,罐底会形成碳酸,影响细菌的呼吸和产物的合成。
CO2浓度的控制应通过其对发酵的影响来确定。如果CO2对产物合成具有抑制作用,请尝试降低其浓度。如果有促进作用,请增加其浓度。所以说在发酵罐中需要对二氧化碳浓度进行实时监测,在发酵罐中安装CO2气体传感器来进行监测,建议使用热导式CO2气体传感器-MD62热导CO2传感器。
MD62热传导气体传感器根据混合气体的总导热系数随待分析气体含量的不同而改变的原理制成,由检测元件和补偿元件配对组成电桥的两个臂,遇可燃性气体时检测元件电阻变小,遇非可燃性气体时检测元件电阻变大(空气背景),桥路输出电压变量,该电压变量随气体浓度增大而成正比例增大,补偿元件起参比及温度补偿作用。